

Unit 1 Understanding Operations and their order

(1-1) Multiplication up to 3-Digits by 2-Digits
(1-2) Division of 3-Digits by 2-Digits.
(1-3) Divisibility.
(1-4) Order of Operations.
(1-5) Problem Solving.
Show Your Turn.

Unit 2 Fractions and Decimals

$(2-1)$ Mixed numbers.	24

(2-2) Simplifying Fractions.
(2-3) Adding Fractions.
(2-4) Subtracting Fractions.
(2-5) Decimals.
(2-6) Comparing Decimals.

(2-7) Problem Solving.	41

Show Your Turn.42

Unit 3 Measurement and Geometry

(3-1) Metric Units.
(3-6) Problem Solving. 58
Show Your Turn. 59
Unit 4 Statistics
(4-1) Bar Graph. 62
(4-2) Line Graph.(4-3) Circle Graph.68
Show Your Turn. 70

Multiply	Multiplicand
Multiplication	Multiplier
Factors	Product
Divide	Division
Divisibility	Remainder
Order of operations	
Mathematical expression	

O Objectives.

Multiply up to 3-digits by 2-digits.

Multiply up to 3-digits by 2-digits using the partial method.
Divide up to 3-digits by 2-digits.
Apply divisibility rules of (2, 3, 6, 5 and 10).
Use order of opertions to solve mathematical expressions.
Solve multiplication and division problems in given contexts.

(1-1) Multiplication up to 3-Digits by 2-Digits.

First step: multiply the ones digit of the bottom factor (multiplier) by the top factor (multiplicand) and write the result on the line below. (5×781)

O Second step: multiply the digit in the tens digit of the bottom factor by the top factor and write the result on the line below. (90×781)

O Third step: add the products.

○
Multiply.

8,073

9,792

407
$\times 52$
21,164

- Fill the missing numbers.

$$
\begin{array}{r|r}
50 \\
\times 93 \\
\hline 150 \\
+\begin{array}{r}
7500 \\
\times 67 \\
\hline 458 \\
\hline 4650
\end{array}+\begin{array}{r}
876 \\
\times 59 \\
\hline 4884 \\
\hline 4958
\end{array}+\begin{array}{r}
43800 \\
\hline 51684
\end{array}
\end{array}
$$Answer using the partial product method.

Check using a calculator.

$$
\begin{aligned}
& 615 \\
& \begin{array}{r}
617 \\
\times \quad 4 \\
\hline
\end{array} \\
& \text { (3) } 5 \times 5 \\
& \text { (7) } \mathbf{7 \times 1 0} \\
& \text { (4) } 2007 \times 600 \\
& \text { (2) } 0040 \times 5 \\
& \text { (4) } 0040 \times 10 \\
& \begin{array}{l}
2400040 \times 600 \\
+28905
\end{array} \\
& \begin{array}{r}
903 \\
\times \quad 86 \\
\hline 188 \\
54006 \\
240 \times 900 \\
240 \\
\hline 72000 \\
\hline 74658
\end{array}
\end{aligned}
$$

Write two numbers of 3-digits and 2-digits, find their product, then check your answer.
(1-2) Division of 3-Digits by 2-Digits.

The 5 is placed directly above the 9

$5 \times 15=75$
75 goes directly below the 89

The remainder, the difference between 89 \& 75, goes under the 75

The number from the ones column is then dropped down
next to the 14

Divide.

063	016	005
$1 2 \longdiv { 7 5 6 }$	$3 2 \longdiv { 5 1 6 }$	$6 5 \longdiv { 3 8 8 }$
72	32	325
036	196	063
36	192	
00	004	

- Find the missing numbers.
 (1-3) Divisibility.

A number is divisible by another number, when you divide, the remainder is 0 .

24 is
divisible
by 8 .

2
$\frac{24}{-18}$

24 is not divisible by 9 .
Since the remainder is 0 , then 24 is divisible by 8,8 is called a factor of 24.

Here are all the factors of 24.
Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24
(Are the following numbers divisible by 3,5,6 and 8 . Complete the tables with (\boldsymbol{V}) or (\boldsymbol{X}).

O Divisibility by 2,3 and 6 . complete

	divisible by 2	divisible by 3	divisible by 6
42	\checkmark	\checkmark	\checkmark
30	\checkmark	\checkmark	\checkmark
18	\checkmark	\checkmark	\checkmark
64	\checkmark	x	X
81	X	\checkmark	8
66	\checkmark	\checkmark	\checkmark
702	\checkmark	ν	\checkmark

When the sum of the numbers digits is divisible by 3.
Example: $285: 2+8+5=15$

The number is divisible by 2 when
The number is divisible by 3 when The number is divisible by 6 when
(a. b, c)
(a, (b, c)
(a, b, © $)$
(Circle the numbers that are divisible by 2.
233

1,131

2,109
2) Circle the numbers that are divisible by 3.
504

1,000

23

3 Circle the numbers that are divisible by 6.

(Divisibility by 5 and 10 .

	Divisibile by 5	Divisibile by 10
300	X	X
204	X	X
516	\boldsymbol{X}	X
9105	$\boldsymbol{\gamma}$	

The number is divisible by 5 when it ends with 5 or 0

The number is divisible by 10 when it ends with 0
(Circle the numbers that are divisible by both 5 and 10 .

367	855
780	4,932
8,608	2,580

O Color the numbers that are divisible by 3 red, and 6 blue.

Apply divisibility rules and color the numbers that are divisible by both 6 and 10.

Show a number that is divisible by 4 ? by 7 ?
$1236 \div 4=309$
$3976 \div 7=568$
(1-4) Order of Operations.
The order of operations is a rule that tells you the sequence to follow when you are performing operations in a mathematical expression.

[^0]OExample.

$$
1+2 \times 5=?
$$

Correct Method
$1+2 \times 5$
$=1+10$
$=11$

Incorrect Method
$1+2 \times 5$
$=3 \times 5$
$=15$
(Find the answer to each question.
(1) $\mathbf{5} \times \mathbf{2}+(\mathbf{3 7}+\mathbf{3} \times 5)+\mathbf{3 7}=99$
(2) $(\mathbf{2 0}+\mathbf{3 0}+\mathbf{1 4})+\mathbf{2 1}+1 \times \mathbf{2}^{3}=93$
(3) $(31-6-16)+14 \times 5+12=91$
(4) $(30-11)-16+30+17-22=28$

- Add the operations symbols ($+,-, x, \div$) to complete the equations.

$25+2-8=19 \quad 6 \times 6-6=30$
$12-9+7=10$
$43-22+6=27$
(1-5) Problem Solving.

Find out if the numbers given below are divisible by any of the numbers 2, 3, 4, 5, 6 and 9 . Write the number in the space provided below. A sample question has been solved for help.

1 450 is divisible by 2, 3, 5, 6 and 9.

2 3939 is divisible by 3
(3) 2432 is divisible by 2

4 6273 is divisible by 3,9
5 A number which is divisible by 4, is divisible by 2

660550 is divisible by 2,5
7) 92454 is divisible by $2,3,6$
$8 \quad 73384$ is divisible by 2 and 4
(9) Give one number which is divisible by 6 2
10) 9936 is divisible by $2,3,4,6,9$

11 899991 is divisible by 3,9
(12) A number which is divisible by 2 and 3 , is divisible by 6
(13) If the last digit of a number is 0 then it is divisible by 15. (True, false)
(14) 1916 is divisible by 4. (True, false)
() A private art gallery managed to sell a total of 98 paintings in one day. The sales averaged out to $482 \$$ per painting. Find the revenue generated from the sales made by the art gallery?

$98 \times 482=47,236$

O
Miss king has 483 raffle tickets for the upcoming carnival. She wants to give them out equally among her 32 students. How many would each student get? And how many tickets would she have left over?

$$
483 \div 32=15.09
$$

() Woodhill elementary schools 3rd and 4th grade classes are planning a joint field trip. There is a total of 454 students in these two grades and only 45 seats per bus. How many buses will be needed to fill all the students?

$$
454 \div 45=10.08
$$

11 Busses will be needed

Show Your Turn

(Multiply. Check the answer.

- Divide. Check the answer.

Solve.

```
\(12 \div 2 \times 6+4-3 \times 3=31\)
```

$$
9 \times(6-2)+8^{2}=100
$$

- Circle the numbers that are.

Divisible by 7

O Color the apple that is divisible by 5 blue , and that is divisible by 6 red ${ }^{3}$. If both apply then color it yellow

Fractions
and
Decimals
(Vocabulary.

- Improper fractions.
- Mixed numbers.
- Greatest Common Factor.
- Least Common Multiple.
- Simplifying.
- Decimals.
- Tenths place.
- Hundredths place.
- Thousandths place.

O Objectives.

- Define an improper fraction, a mixed number.
- Convert a mixed number to an improper fraction and vice versa.

Find the Greatest Common Factor (GCF) of two numbers.

- Find the Least Common Multiple (LCM) of two numbers.

Simplify fractions.

- Add and subtract fractions.

Define a decimal.

- Compare decimals.

Solve problems about fractions and decimals.

(2-1) Mixed Numbers.

When a fraction has a numerator that is greater than or equal to the denominator it is called an improper fraction.
$\frac{9}{4}$ means there are 9 parts. Each part is $\frac{1}{4}$ of a whole.

$$
\frac{9}{4}=2 \frac{1}{4}
$$

Also $2 \frac{1}{4}$ is called a mixed number.

Write the improper fractions by looking at the Models.

Shapes
 Improper fraction
 Mixed number

$\frac{7}{3}$
$2 \frac{1}{3}$

$\frac{11}{2}$
$1 \frac{5}{6}$

$3 \frac{1}{2}$

$\frac{23}{3}$
$3 \frac{7}{8}$

0
To convert a mixed number to an improper fraction and vice versa.

$$
\begin{aligned}
& \underbrace{\frac{1}{2}}_{x}=\frac{11}{2} \quad \text { denominator } \leftarrow 4 \sqrt{\frac{13}{4}} \begin{array}{l}
\frac{12}{4} \\
\frac{13}{4} \\
\hline
\end{array} \quad \text { numerator }
\end{aligned}
$$

- Convert to an improper fraction.
a) $1 \frac{2}{3}=\frac{5}{3}$
b) $6 \frac{1}{10}=\frac{16}{10}$
- Convert to a mixed number.
a) $\frac{15}{3}=5$
b) $\frac{17}{5}=3 \frac{7}{5}$

Your Work

Use models to show $2 \frac{1}{3}$

To simplify the fraction $\frac{14}{42}$, find the Greatest Common Factor between the numerator and the denominator.

(2) $\times 3$

The Greatest Common Factor (GCF)=7×2=14
so $\quad \frac{14 \div 14}{42 \div 14}=\frac{1}{3}$
($\frac{14}{42}, \frac{1}{3}$ are equivalent fractions)
O Simplify the fractions.
a) $\frac{15}{20}=\frac{15 \div 5}{20 \div 5}=\frac{3}{4}$
b) $\frac{10}{16}=\frac{10 \div 2}{16 \div 2}=\frac{5}{8}$
c) $\frac{18}{20}=\frac{18 \div 2}{20 \div 2}=\frac{9}{10}$
d) $\frac{45}{50}=\frac{45 \div 5}{50 \div 5}=\frac{9}{10}$

- Circle the equivalent fractions.

b) $\frac{3}{8}, \frac{24}{9}$

d) $\frac{36}{45}, \frac{18}{30}, \frac{8}{10}$

Your Work

Write three equivalent fractions. Use models to show.

$$
\frac{1}{2}
$$

$\frac{2}{4}$
$\frac{3}{6}$

(2-3) Adding Fractions.

since $\frac{1}{2}=\frac{2}{4}$ (the Least Common Multiple of 2,4 is 4)

$$
\text { so } \frac{1}{2}+\frac{1}{4}=\frac{2}{4}+\frac{1}{4}=\frac{3}{4}
$$

Think how to find $\frac{1}{2}+\frac{3}{5}$ using models.
(Find.
a) $\frac{2}{3}+\frac{1}{4}$

$$
=\frac{2 \times 4}{3 \times 4}+\frac{1 \times 3}{4 \times 3}=\frac{8}{12}+\frac{3}{12}=\frac{11}{12}
$$

b) $\frac{5}{8}+\frac{1}{4}$

C) $\frac{1}{7}+\frac{1}{2}$

$$
=\frac{2 \times 1}{2 \times 7}+\frac{7 \times 2}{7 \times 2}=\frac{2}{14}+\frac{7}{14}=\frac{9}{14}
$$

d) $\frac{1}{8}+\frac{2}{6}$

$$
=\frac{3 \times 1}{3 \times 8}+\frac{4 \times 2}{4 \times 6}=\frac{3}{24}+\frac{8}{24}=\frac{8}{24}
$$

O Adding mixed numbers.
$2 \frac{1}{3}+1 \frac{1}{2}$

Step 1 Add the whole number. "store" the answer for $2+1=3$ later use!

Step 2 Add the fraction parts.

$$
\frac{1}{3}+\frac{1}{2}
$$

6 is a common multiple of 3 and 2
Change the first fraction to an equivalent fraction with a denominator of 6 .

$$
\frac{1 \times 2}{3 \times 2}=\frac{2}{6}
$$

- -

Do the same for the second fraction.

$$
\frac{1 \times 3}{2 \times 3}=\frac{3}{6}
$$

Add the fraction parts.
Convert to a mixed number if neccesary.

$$
\frac{1}{3}+\frac{1}{2}=\frac{2}{6}+\frac{3}{6}=\frac{5}{6}
$$

Step 3 And finaly. Add the results of the whole number addition.

$$
2 \frac{1}{3}+1 \frac{1}{2}=3 \frac{5}{6}
$$

- Add, and write in the simplest form.

a) $1 \frac{3}{8}+2 \frac{3}{4}=$

$$
1 \frac{3}{8}+2 \frac{3 \times 2}{4 \times 2}=3 \frac{9}{8}=4 \frac{1}{8}\left(\frac{9}{8}=1 \frac{1}{8}\right)
$$

b) $2 \frac{2}{3}+1 \frac{3}{4}=\frac{4 \times 8}{4 \times 3}+\frac{3 \times 7}{3 \times 4}=\frac{32}{12}+\frac{21}{12}=\frac{56}{12}=4 \frac{8}{12}$
c) $1 \frac{3}{7}+5 \frac{1}{2}=\frac{2 \times 10}{2 \times 7}+\frac{11 \times 7}{2 \times 7}=\frac{20}{14}+\frac{77}{14}=\frac{97}{14}=6 \frac{13}{14}$
d) $1 \frac{6}{12}+3 \frac{1}{2}=\quad \frac{17}{12}+\frac{7 \times 6}{2 \times 6}=\frac{17}{12}+\frac{42}{12}=\frac{59}{12}=4 \frac{11}{12}$
e) $2 \frac{4}{5}+1 \frac{2}{3}=\frac{3 \times 14}{3 \times 5}+\frac{5 \times 5}{5 \times 3}=\frac{42}{5}+\frac{25}{5}=\frac{67}{5}=13 \frac{2}{5}$

Your Work

Write two mixed numbers with different denominators. What is their sum?

$$
2 \frac{3}{5}+3 \frac{1}{7}=5 \frac{26}{35}
$$

$$
\frac{7}{8}-\frac{3}{8}=\frac{4}{8}
$$

$$
\text { note } \frac{7}{8}-\frac{3}{8}=\frac{7-3}{8}=\frac{4^{1}}{8^{2}}=\frac{1}{2}
$$

a. Find the Least Common Multiple (LCM) of the

LCM= 6

 denominators.b. Rewrite using the LCM.

$$
\frac{5}{6}-\frac{1 \times 2}{3 \times 2}=\frac{5}{6}-\frac{2}{6}=
$$

C. Subtract the numerators, the denominator stays the same.

$$
\frac{5}{6}-\frac{2}{6}=\frac{3}{6}
$$

d. Simplify.

$$
\frac{3 \div 3}{6 \div 3}=\frac{1}{2}
$$

(Subtract.
a) $\frac{2}{3}-\frac{2}{10}=\frac{14}{30}$

$$
\frac{2}{3} \times 10 \quad \frac{2}{10} \times 3
$$

$$
\frac{20}{30}-\frac{6}{30}
$$

$\frac{4}{5}-\frac{2}{4}=\frac{6}{20}$

$$
\begin{aligned}
\frac{4}{5} \times 4 & \frac{2}{10} \times 3 \\
\frac{16}{20} & -\frac{10}{20}
\end{aligned}
$$

O subtract.
(a) $3 \frac{1}{4}+2 \frac{6}{8}=6$
(b) $5 \frac{3}{5}-2 \frac{1}{10}=3 \frac{5}{10}$

$$
3 \frac{1}{6}-1 \frac{1}{6}=2
$$

$$
5 \frac{2}{3}-4 \frac{2}{4}=1 \frac{2}{12}
$$

$2-\frac{3}{5}=1 \frac{2}{5}$

$$
\text { Your Work }=\frac{1}{2}
$$

Find ($3 \frac{1}{4}-2 \frac{6}{8}$), then find using models.

(5-2) Decimals.

A decimal is a number that contains two parts separately with a decimal point. Digits can be placed to the left and right of the decimal point to show numbers greater than one or less than one. The decimal point is placed to the right of the ones place. tenths place

The first digit to the right of the decimal point is in the tenths place.
The decimal 0.7 is equal to seven tenths, or $\frac{7}{10}$.

O
 Write the fraction and its equivalent decimal.

$\frac{2}{10}=0.2$
$\frac{5}{10}=0.5 \ldots$

$$
2 \frac{8}{10}=2.8
$$

$$
\frac{9}{10}=0.9
$$

- Hundredths place.

The square has 100 equal parts.
The part of the square that is shaded is..... The answer as a decimal.

$$
\frac{6}{100}=0.06
$$

O Convert each fraction to a decimal.

$$
\begin{array}{rlr}
\frac{15}{100}=0.15 & \frac{38}{100}=0.38 \\
\frac{4}{100}=0.04 & \frac{9}{100}=0.09
\end{array}
$$

Write each decimal using a simlified fractions.

$$
\begin{aligned}
& 0.05=\frac{5}{100}=\frac{1}{20} \quad 0.01=\frac{1}{100} \\
& 0.16=\frac{16}{100} \\
& 0.03=\frac{3}{100}
\end{aligned}
$$

The third digit to the right of the decimal is in the thousandths place. (a number written in words)
hundreds

Fraction or
Mixed Number

$\frac{9}{100}$

$32 \frac{78}{100}$
$401 \frac{839}{1000}$

$26 \frac{7}{100}$

$172 \frac{301}{1000}$
$25 \frac{4}{10}$

1	7	2	\bullet	3	0
	1				
	2	5	\bullet	4	

$13.425=3+0.4+0.02+0.005$
$24.18=4+0.10+0.08$
$3 \quad 5.209=5+0.200+0.009$

4 1.736= $1+0.700+0.030+0.006$

- Write the name of the decimal place value of the underlined digit in the given numbers.

Write a decimal of hundredths that equals a decimal of thousandths.
(2-6) Comparing Decimals.

Step 1
Line up the numbers according to the place value.

> 12.4
> 12.39

Step 2

Compare the numbers in each place starting from the left.
start here
$10=10$
$2=2$
0.4 is more than 0.3
12.4
12.39
so......
12.4 is greater than $12.39 \longmapsto 12.4>12.39$

- Write ($>,<$ or $=$).
a)

c)

b)

d)

Circle the greatest number.
2.34
23.4
0.234
234.0

O Circle the smallest number.
90.9

9.9
90.09

- Circle the equivalent fractions.

0.2	$\frac{7}{10}$	$\frac{4}{10}$	$\frac{2}{10}$
0.5	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$

Your Work

Use the models to show that $0.3=0.30$

(2 -7) Problem Solving.

1 A pitcher contains $2 \frac{3}{4}$ pints of orange juice.
After you pour $\frac{1}{5}$ of a pint into a glass, how much is left in the pitcher? Write the answer using decimals.

$$
2.75+0.2=2.95
$$

2 Susan swims a race in $\frac{\mathbf{2 9 3}}{\mathbf{1 0}}$ seconds. Patty swims the race in $\frac{\mathbf{3 3 9}}{\mathbf{1 0}}$ seconds. Write each time using decimals. Who is the fastest?

$$
33.4>29.3
$$

3 A swimming pool is open for $\mathbf{7} \frac{\mathbf{1}}{\mathbf{2}}$ hours during a day.
The pool keeps one lifeguard on duty at a time, and each lifeguards shift is $\mathbf{1} \frac{\mathbf{1}}{\mathbf{2}}$ hours long.
How many shifts are there per day?

$$
7.5 \div 1.5=5
$$

Show Your Turn

- simplify the follwing fractions.

$$
\begin{array}{l|l|l|}
\frac{6}{12} & \frac{1}{6} & \frac{2}{8} \\
\hline \frac{12}{36} & \frac{1}{3} & \frac{4}{20} \\
\hline
\end{array}
$$

- Write a mixed number for each of the shaded sets of shapes using the simplest form.

- Find the answer.

$>\frac{3}{4}+\frac{3}{5}+\frac{1}{2}=$

$$
\frac{15}{20}+\frac{12}{20}+\frac{10}{20}=1 \frac{17}{20}
$$

$>\frac{2}{4}+\frac{2}{5}+\frac{2}{10}=1 \frac{2}{20}$

$$
\quad 3 \frac{5}{7}+3 \frac{12}{21}=7 \frac{4}{21}
$$

$$
7 \frac{4}{5}+3 \frac{8}{20}=11 \frac{4}{20}
$$

$$
>9 \frac{8}{20}-4 \frac{2}{5}-\frac{1}{2}=4 \frac{10}{20}
$$

() Write ($>,<,=$).

$$
6 \frac{1}{4}-3 \frac{2}{20}=6 \frac{1}{4}-3 \frac{1}{10}
$$

$$
9 \frac{5}{6}+5 \frac{2}{3} \gg 8 \frac{7}{9}-4 \frac{1}{3}
$$

$$
5 \frac{1}{4}-1 \frac{1}{8} \ll 3 \frac{1}{2}+5 \frac{3}{6}
$$

$$
3 \frac{1}{4}+2 \frac{4}{6} \ll 2 \frac{1}{2}+3 \frac{1}{2}
$$

(Find the missing numbers.

$$
4 \frac{1}{2}-1 \frac{5}{\overline{-8}}=2 \frac{7}{8}
$$

$$
7 \frac{5}{8}-2 \frac{2}{\sqrt{8}}=5 \frac{3}{8}
$$

$4 \frac{4}{\overline{8}}+8 \frac{7}{8}=13 \frac{3}{8}$
$9 \frac{\sqrt{1}}{\overline{2}}+1 \frac{1}{2}=11$

Measurement and Geometry

O
 Vocabulary.

- Metric Units
- Kilometer (km)
- Meter (m)
- Decimeter (dm)
- Centimeter (cm)
- Millimeter (mm)
- Volume Units
- Cubic meter (m^{3})
- Cubic decimeter (dm^{3})
- Cubic centimeter (cm^{3})
- Cubic millimeter (mm^{3})

O Objectives.

Capacity Units
Liter (I)
Milliliter (ml)
Mass Units
Kilogram (kg)
Gram (g)
Protractor

- Compare and convert the different units of Length.
- Compare and convert the different units of an Area.
- Compare and convert the different units of Volume.
- Compare and convert the different units of Capacity.
- Compare and convert the different units of Mass.
- Use a protractor to draw or measure the angles.

(3-1) Metric Units.

We use centimeter (cm) to measure the length of a pencil, the width of a book etc. But this unit is too big to measure the thickness of a pencil. So we use another unit called millimeter (mm).

We use another unit called meters (m). to measure the length of the classroom. Even meter is too small of a unit when we state the distance between two cities, there we need kilometers (km).

Review the sizes of millimeters, centimeters, meters, and kilometers and how to convert between them.

Kilometer	Meter	Decimeter	Centimeter	Millimeter
$\mathbf{k m}$	\mathbf{m}	$\mathbf{d m}$	$\mathbf{c m}$	$\mathbf{m m}$
$\mathbf{1}$	1000	10,000	100,000	$1,000,000$
$\frac{1}{1000}$	1	10	100	1000
$\frac{1}{10,000}$	$\frac{1}{10}$	1	10	100
$\frac{1}{100,000}$	$\frac{1}{100}$	$\frac{1}{10}$	1	10

Since $1 \mathrm{~km}=1000 \mathrm{~m}$, then $7 \mathrm{~km}=7000 \mathrm{~m}$
$(7 \times 1000=7000)$

Since $1 \mathrm{~m}=100 \mathrm{~cm}$, then $500 \mathrm{~cm}=5 \mathrm{~m}$
$(500 \div 100=5)$

- Converting Metric Units - Area.

$1 \mathrm{~m}^{2}=1 \mathrm{~m} \times 1 \mathrm{~m}=(100 \mathrm{~cm}) \times(100 \mathrm{~cm})=10,000 \mathrm{~cm}^{2}$

$$
4 \mathbf{m}^{2}=-\quad \times \quad=\quad=-\quad \mathbf{c m}^{2}
$$

(Convert.

$13 \mathrm{~m}=$	130	dm	$180 \mathrm{~cm}=$	1800	mm
$4 \mathrm{~km}=$	40000	dm	$11 \mathrm{~m}^{2}=$	110	cm^{2}
$200 \mathrm{~cm}=$	2	m	$49000 \mathrm{~cm}^{2}=$	490000	mm^{2}
$2300 \mathrm{~mm}=$	23	dm	$25 \mathrm{~m}^{2}=$	25000	mm^{2}

(Write $(<,>$ or $=)$.

45 cm

12 km

$1 \mathrm{~m}^{2}$

$62000 \mathrm{~mm}^{2}$

Your Work

$300 \mathrm{~cm}=0.3 \mathrm{~km}$. Why?
Because when we

$$
\frac{300}{1000}=\frac{3}{10}=0.3 \mathrm{~km}
$$

(3-2) Volume Units.
Volume is the measurement of an amount of space occupied by on object.

Volume is measured in cubic units, such as $\mathrm{cm}^{3}, \mathrm{dm}^{3}, \mathrm{~mm}^{3}$. The unit we use to measure the volume of a room is $\left(\mathrm{m}^{3}\right)$, the unit used to measure a small eraser is (cm^{3}).

$$
1 \mathrm{~m}^{3}=1000 \mathrm{~cm}^{3} \quad \text { note } 1 \mathrm{~m}^{3}=1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}, ~=10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}
$$

(Convert.

Write the suitable number.

Ali has a box, its volume is $15 \mathrm{~cm}^{3}$.
Dana's box volume is $8 \mathrm{dm}^{3}$. But Hana's is $0.6 \mathrm{~m}^{3}$.
Who has the greatest box volume. Why?
Hana $=600$ dm 3

○
 (3-3) Capacity Units.

Capacity is the amount a container can hold.

The standard unit to measure capacity is liter.
We buy milk in liters (I) where liquids and medicines are measured in milliliter (ml).

1 liter (l) = 1000 milliliter (ml)

- Convert.

(ml)
(ml)
(I)

Your Work

Show the relationship between 1 Liter and $1 \mathrm{dm}^{3}$. $1,000 \mathrm{dm}^{3}$

(3-4) Mass Units.

The mass is a measure of the amount of matter in an object. The unit used to measure the mass of sugar, rice, apple,etc is kilogram (kg).

But, items like ginger, chilies etc. are measured in gram (g).

In order to measure the mass of compounds or chemicals in medicines, we use a smaller unit called milligram (mg).

The relations between these three units of measurements of Mass:
1 kilogram (kg)=1000 grams (g)
1 gram (g)= 1000 milligrams (mg)
1 kilograms (kg)=1,000,000 milligrams (mg) explain.

- Convert the mass.

$$
25 \mathrm{~kg}=25,000 \mathrm{~g}
$$

$$
3 \mathrm{~g}=3,000 \quad \mathrm{mg}
$$

$$
3000 \mathrm{mg}=0,003 \quad \mathrm{~kg}
$$

() Write the suitable number.

Centre of the protractor is over all the vertex.

Base line of the protractor is along one of the angle lines.

- Measure each angle using a protractor. Identify the type.

Angle :

Type : Acute

Angle : 0°
Type : straightline

Angle : \qquad
Type : Obtuse

Angle : 90°
Type : Right Angle

Draw two angles measuring 70° and 140°.

(3-6) Problem Solving.

O Mary wants new carpeting for her dining room. Her dining room is a 5 m by 4 m rectangle. How much carpeting does she need to buy to cover her dining room completely?

$20=5 \times 4 \mathrm{~m}^{2}$

- During a long walk, Ahmad drank 5 full 600 ml bottles of water. How many Liters of water is this equal to?
$=0.6$
- The volume of a rectangular refrigerator is found by calculating (width \times depth \times height). If the refrigerator on sale is 80 cm wide, $1 \frac{1}{2} \mathrm{~m}$ high and 500 mm deep.
Find the refrigerator's volume.
$80 \mathrm{~cm} \times 150 \mathrm{~cm} \times 50 \mathrm{~cm}=600,000 \mathrm{~cm}^{3}$

O Masa and Zaid are twins. When they were born, Masa was 600 grams more than Zaid. If Zaid was 3 kgs at birth, then how much more was Masa at birth?
Masa $=3600 \mathrm{~g}$
Zaid $=3000$ g

Show Your Turn

○ Fill the blank.
(1) $200 \mathrm{~g}+800 \mathrm{~g} \ldots=1 \mathrm{~kg}$
(2) $5000 \mathrm{ml}+500 \mathrm{ml}=11$
(3) $250 \mathrm{~m}+750 \mathrm{~m}=1 \mathrm{~km}$
(4) $2 \mathrm{~m}^{3}=200 \quad \mathrm{~cm}^{3}$
(5) $3000 \mathrm{~g}+1.000 \mathrm{~g}=4 \mathrm{~kg}$
(6) $131=13,000 \mathrm{ml}$

O
Measure the angle with a protractor. Is it acute, obtuse, or a right angle?

obtuse

obtuse

obtuse

acute

- Vocabulary.

- Bar graphs
- Line graphs
- Circle graphs

O Objectives.

- Read the data represented using a bar graph.
- Read the data represented using a line graph.
- Read the data represented using a circle graph.
- Data representation.

(4-1) Bar Graphs.

Bar graphs are visual representations that help us organize information easily. The information is drawn into rectangular bars with heights or lengths proportional to the values that they represent. Bar graphs are also called bar charts.

Bar graphs have 2 axis, one is vertical and the other is horizontal.

Miss Sara, recorded the favorite subjects of her students in a bar graph. Use the graph to answer the questions.

Favorite Subjects

- What unit scale is used to display the popularity of subjects among the students? Number of students by 5
- Which subject is the second most popular?
Ela
- Which subject is less popular, science or ELa? science
- Which subject is the most favorite?Math
- Which subjects have the same number of votes? Social studies, science
- What number of students favor Math and science? 80

0
Help Mr. Omar count his crops by creating a bar graph. Color in the correct number of boxes for each crop. The first crop has been done for you.

(4-2) Line Graphs.
Title

Karam works as a sales man in an authorized car showroom. He recorded the number of cars sold in five days (Monday to Friday) on a line graph. Study the graph and answer the questions.

The day with the maximum number of cars sold was Friday.
The number of cars sold on Wednesday was \qquad 6
The difference between cars sold on Tuesday and cars sold on Monday was \qquad .
The number of cars sold in all 5 days was \qquad .

Study the bar graph and answer the questions.

- How many kids like apples? 7
- Which fruit did the kids like the most?bananas
- Which fruit did the kids like the least? Pears
- How many kids like bananas? 8
- How many kids like pears and bananas? 11
- How many kids like oranges and apples? 13

Movies Watched.

Ghada and her family often watch movies at home.
The data shows the number of movies watched by them from 2014 to 2018. Draw a line graph to represent the data.

Year	Number of movies
2014	8
2015	12
2016	10
2017	14
2018	18

(4-3) Circle Graph.

Answer the following questions.

Hala's restaurant surveyed a sample of customers about their favorite food. They made a pie graph with the survey results. Read the pie graph and answer the questions.

- What is the most favorite food among the customers? Hotdogs
- How many customers like fried chicken?
- Which is the least favorite food? Sandwiches
- How many customers voted for burgers as their favorite?
- How many customers participated in the survey? 95

A group of kids spent a week at big tree summer camp. At the end of the week.....

- What activity did campers enjoy the most?

Horseback riding

- What fraction of the campers did canoeing as their favourite activity?

$$
\frac{1}{4}
$$

- Which activity was more popular with the campers?

Show Your Turn

- The number of donations in JDs from grade 1 to grade 5 at a school in a day are given below. Make an appropriate scale and draw a line graph. Also label the axes and write a title for the graph.

Charity

O
Richards camping store is the best for camping gear supplies. They made a pie graph of the sales for certain items during the month of July. Use the graph to answer the questions.

- Which item sold the most in Richards camping store?

Torch

- What is the fraction expressing the number of torches sold?

$$
\frac{1}{2}
$$

- Did the store sell fewer bags or torches?

bags

- Are the sales of bags more than the sales of tents?

[^0]: Do P, then E. Then do M or D. Left to right. Lastly, do A or S, left to right.

